-
Ultrasonic Welding Equipment
-
Ultrasonic Welding Transducer
-
Ultrasonic Welding Converter
-
Ultrasonic Liquid Processor
-
Ultrasonic Cutting Equipment
-
Ultrasonic Sealing Equipment
-
Ultrasonic Spray Nozzles
-
Ultrasonic Power Supply
-
Ultrasonic Soldering Equipment
-
Ultrasonic Welding Horn
-
Ultrasonic Assisted Machining
-
Ultrasonic Testing Equipment
-
Poluda IgorRPS-SONIC is very professional and the sales industry is very patient. I think my air filter has got a perfect cutting plan here.
-
MikeUltrasonic processing is amazing, greatly improving the quality of our company's finishing
-
Nguyễn Côngthe machine worked for 5years, still in good performance, Made in China is good quality now, RPS-SONIC is good quality.
20Khz 3000w High Efficient Ultrasonic Homogenizer For Acceleration Wine Aging

Contact me for free samples and coupons.
Whatsapp:0086 18588475571
Wechat: 0086 18588475571
Skype: sales10@aixton.com
If you have any concern, we provide 24-hour online help.
xFrequency | 20Khz | Power | 3000w |
---|---|---|---|
Horn Material | Titanium Alloy | Horn Size | 35mm Diameter |
Generator | Digital | Power Supply | AC220V 50/60Hz |
Weight | 30kg | ||
High Light | High Efficient Ultrasonic Homogenizer,20Khz Ultrasonic Homogenizer 3000w,Wine Aging Ultrasonic Homogenizer |
20Khz high efficient ultrasonic homogenizer for Acceleration wine aging
Parameter
Model | SONO20-1000 | SONO20-2000 | SONO15-3000 | SONO20-3000 |
Frequency | 20±0.5 KHz | 20±0.5 KHz | 15±0.5 KHz | 20±0.5 KHz |
Power | 1000 W | 2000 W | 3000 W | 3000 W |
Voltage | 220/110V | 220/110V | 220/110V | 220/110V |
Temperature | 300 ℃ | 300 ℃ | 300 ℃ | 300 ℃ |
Pressure | 35 MPa | 35 MPa | 35 MPa | 35 MPa |
Intensity of sound | 20 W/cm² | 40 W/cm² | 60 W/cm² | 60 W/cm² |
Max Capacity | 10 L/Min | 15 L/Min | 20 L/Min | 20 L/Min |
Descrition
In chemistry, "acoustic cavitation" refers to the formation, growth and implosion of tiny bubbles. Cavitation bubbles consist of compression-expansion cycles that cause positive pressure in the liquid to push molecules together. Conversely, expansion cycles cause The negative pressure pulls the molecules away from each other, and once the bubbles grow very rapidly, until they can't absorb the energy in the ultrasound. In this case, the liquid will rush in and the bubble will burst. The whole process destroys the attraction of molecules in the liquid phase. Sound waves can help extract chemicals from plant tissue. Ultrasound is a pressure wave that causes tissue to rupture, at higher speeds
release of bioactive compounds stored in cells.
Cavitation bubbles burst quickly, and these tiny bubbles formed during ultrasonication raise the temperature of the liquid surrounding the cavity and create localized hot spots. However, the area is so small that the heat dissipates quickly. On the other hand, very high pressures, ie about 1000 atmospheres, are generated during bubble collapse. Instantaneous high temperature and high pressure can destroy stable structures such as cell walls and molecular bonds, resulting in a series of physical and chemical effects.
Effect on grapes
Different effects of ultrasound in wine processing Power ultrasound applied to wine provides many beneficial effects. The most important applications include enhancing the flavor of wine by extracting flavor-rich components such as phenols and aromatics, oak barrel aging, and accelerated maturation and aging. Extraction of aromatic and phenolic compounds from grapes The mechanical activity of ultrasound supports solvent diffusion into tissue. When ultrasound mechanically disrupts the cell wall through cavitational shear forces, it facilitates transfer from the cell to the solvent. Reducing particle size by ultrasonic cavitation increases the contact surface area between the solid and liquid phases. Grapes are known for being rich in polyphenols and are in high demand. These phenolic compounds of grapes (such as monomeric flavanols, dimeric, trimeric and polymeric proanthocyanidins, and phenolic acids) are known for their anti-radical and antioxidant properties. Chemically, they can be divided into two subcategories: flavonoids and non-flavonoids. The most important flavonoids in wine are anthocyanins and tannins, which contribute to color, flavor and mouthfeel. Non-flavonoids include stilbene compounds such as resveratrol and acidic compounds such as benzoic acid, caffeic acid and cinnamic acid. Most of these phenolic compounds are contained in grape skins and seeds. Intense ultrasonic force can effectively extract valuable components from grape seeds and grape skins.
For additive action
The wine becomes a homogeneous liquid with an extended shelf life within a very short processing time. Homogeneity allows higher interactions between molecules and thus more complete molecular changes. This means improved taste and quality. Dispersion: Before bottling, most wines are treated with additives such as preservatives (e.g. potassium bisulfate, sodium bisulfate), cleaning agents, coloring powders, and further fining and improving agents. These additives are used to avoid premature browning and spoilage, improve wine quality, eliminate defects or support the fermentation process. With ultrasonic treatment, these additives can be dispersed very consistently into the wine, resulting in higher processing results. Local high temperature (close to 5000 degrees Celsius) and high pressure (above 50 MPa) generated by ultrasonic cavitation. Microcavitating bubbles (approximately 1 µm in diameter) act uniformly throughout the fluid (Pascal's law) and can penetrate deep into the pores. The cavitation phenomenon produced by high-power ultrasound inhibits a large number of pathogenic microorganisms.